A Space and Solar Physics Great Observatory: Virtual but Nearing Reality

Aaron Roberts
NASA GSFC
Joe King
QSS, Inc.
Vasili Rezapkin
Aquilent

Why a Great Observatory?

- Progress in space and solar physics increasingly depends on multispacecraft and spacecraft/model integration.
- We now have many resources online, but in many places and in different formats.
- To solve problems such as those posed by the Living With a Star Program, a new paradigm is needed in which the various observational and computational resources are easily accessible in a uniform way.

Definition of a "Virtual Observatory"

A Virtual Observatory (VO) is a suite of software applications on a set of computers that allows users to uniformly find, access, and use resources (data, software, document, and image products and services using these) from a collection of distributed product repositories and service providers.

A VO is a service that unites services and/or multiple repositories.

Purpose of VOs

- Make "standard" scientific research much more efficient.
 - Even the PI teams should want to use them.
 - Must improve on existing services (Mission and PI sites, CDAWeb, etc.).
 VOs will not replace these, but will use them in new ways.
- Enable new, global problems to be solved (make a "Great Observatory")
 - Rapidly gain integrated views from the solar origin to the terrestrial effects of an event.
 - Find data related to any particular observation.
 - (Ultimately) answer "higher-order" queries such as "Show me the data from cases where a large CME observed by SOHO was also observed in situ."

Tasks for a VO Data Environment

- Produce and make openly publicly available complete, high-quality data products and basic software to use them.
 - This is the core of the data environment.
 - Automated data reduction is key, and should be supported.
 - Open, public availability makes the user part of the data-quality effort; for some this is new. An open-data policy is generally good for providers.
- Register the resources (products and services) in a uniform language.
 - A community accepted "data model" provides the required semantics.
 - A general registry ("metadata library") with web-based entry and easy export could keep track of additions and changes.
 - Product IDs can help a great deal to simplify access and use.

Tasks for a VO Data Environment (cont.)

- Provide direct machine access, preferably using the above uniform language, to the resources. Provide APIs to make access easier.
 - A common set of protocols (e.g., "SOAP", cgi, ftp standards) would help.
 - "VxOs" can organize subfields.
- Develop tools to find and access the resources ("gateways/brokers") using the registry and the access methods.
 - Produce APIs that allow applications to use these tools.
 - Provide "default" front-end applications.

Tasks for a VO Data Environment (cont.)

- Develop applications and services to use data products.
 - Applications can be downloaded, repository provided (e.g., graphics and subsetting), or web service accessible (e.g., SolarSoft via CoSEC)
 - Some useful services: running "on-demand" models; reading, displaying, and translating multiple formats; transformating coordinates; merging related datasets and performing correlations; browsing data plots.
- Enable "higher-order" queries using "pre-mining" of data to produce event lists and modest resolution datasets.
 - We want to ask things like, "When were there solar flares, strong geomagnetic activity, and spacecraft both upstream of the Earth and in the magnetotail?"
 - Direct data mining will be possible only in special cases.

A "large box":

Broader but less uniform access.

"Product" oriented.

Iterative search interface.

Much the same basic structure.

ViSBARD Orbits

ViSBARD Magnetospheric Data Viewing

A First "Large Box": Science Use and Internal Structure (Virtual Space Physics Observatory)

Primary developers:

Aaron Roberts, NASA/GSFC

Vasili Rezapkin, Aquilent

Joe King, QSS

Now connected to LWS, SPASE, CDAWeb, and, less directly, to VSO and VHO, as well as SBIR and other projects such as ViSBARD.

Overview

- VSPO is designed to provide access to a wide variety of data, image, model, and other products or URLs to sites that deliver these products. ("Three clicks from data.")
- A dynamic web page front end allows "Google-like" and element-based searches for products.
- "SOAP" interfaces pass internal messages, and are used for direct repository access. Other protocols for the latter (e.g., ftp) will be implemented.
- Additional service links (for orbits, references, and current space weather) are provided for convenience.

000	CDAW accessor	
CDAW accessor for (OMNI hourly solar wind field, plasma data etc.)		
Use: 'YYYY.MM.DD - YYYY.MM.DD' form. Entering a single date indicates a one day interval.		
Parameter name	Parameter description	
Rot#	Bartels Rotation Number	
☐ IMF	OMNI2 ID code for IMF source spacecraft (see OMNI documentation link for codes)	
□ PLS	OMNI2 ID code for IP plasma source spacecraft (see OMNI2 documentation link for codes)	
■ IMF_PTS	# fine time scale IMF PTS	
PLS_PTS	# fine time scale plasma PTS	
ABS_B	1AU IP Average B Field Magnitude (last currently-available OMNI2 B-field data 2003 Oct 2 / Day 275)	
□ F	1AU IP Magnitude of average field vector	
☐ THETA_AV	1AU IP Latitude/Theta of average B vector	
PHI_AV	1AU IP Longitude/Phi of average B vector	
BX_GSE	1AU IP Bx, GSE	
BY_GSE	1AU IP By, GSE	
■ BZ_GSE	1AU IP Bz, GSE	
BY_GSM	1AU IP By, GSM	
BZ_GSM	1AU IP Bz, GSM	
SIGMA-ABS_B	RMS deviation of average B magnitude	
SIGMA-B	RMS deviation of magnitude of the average vector field	
SIGMA-Bx	RMS deviation Bx GSE	
SIGMA-By	RMS deviation By GSE	

RMS deviation Bz GSE

1AU IP Plasma Temperature (last currently-available OMNI2 plasma data

SIGMA-Bz

Document: Done

ΠТ

900	CDAW accessor
SIGMA-ratio	RMS deviation alpha/proton ratio
<u></u> E	1AU IP Electric Field
■ Beta	1AU IP Plasma beta
Mach_num	1AU IP Alfven mach number
	Kp*10 (last currently-available OMNI2 KP and R data 2003 Nov 30 / day 334)
□ R	Sunspot number (R)
□ DST	Provisional DST index (last currently-available OMNI2 DST indices 2003 Oct 31 / day 304)
□ AE	AE-index (last currently-available OMNI2 AE indices 1988 June 30 / day 182)
PR-FLX_1	1AU Proton flux > 1 MeV (last currently-available OMNI2 proton fluxes 2001 Jun 17)
PR-FLX_2	1AU Proton flux >2 MeV
PR-FLX_4	1AU Proton flux >4 MeV
PR-FLX_10	1AU Proton flux >10 MeV
PR-FLX_30	1AU Proton flux >30 MeV
PR-FLX_60	1AU Proton flux >60 MeV
■ MFLX	Magnetospheric Contamination of 1AU Proton Flux code (6=No,<=5 see OMNI documentation)
Select all	
Unselect all	
	Retrieve CDF Retrieve ASCII Graph
	Processing may take a few minutes.

Document: Done


```
<?xml version="1.0"?>
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Vasili Rezapkin (AQUILENT) -->
<!DOCTYPE dictionary SYSTEM "dictionary.dtd">
Kdictionaru>
    <element name="PRODUCT" display="Product">
        <content/>
        Kchildren>
            <child_element name="HEADER" required="yes" allow_multiple="no"/>
            <child_element name="TIME_SERIES" required="no" allow_multiple="yes"/>
        C/children>.
    </element>
    <element name="HEADER" display="Header">
        Koontent/>
        Kchildren>
            <child_element name="PRODUCT_NAME" required="yes" allow_multiple="no"/>
            <child_element name="PRODUCT_DESCRIPTION" required="yes" allow_multiple="no"/>
            <child_element name="CONTACT_INFORMATION" required="no" allow_multiple="no"/>
            <child_element name="INSTRUMENT_ABBREVIATION" required="no" allow_multiple="yes"/>
            <child_element name="ACCESS_URL" required="no" allow_multiple="yes"/>
            Kchild_element name="REPOSITORY" required="yes" allow_multiple="no"/>
            <child_element name="PRODUCT_TYPE" required="yes" allow_multiple="yes"/>
            <child_element name="OBSERVATORY_REGION" required="no" allow_multiple="yes"/>
            <child_element name="OBSERVED_REGION" required="no" allow_multiple="yes"/>
            <child_element name="PROJECT" required="no" allow_multiple="ues"/>
            <child_element name="OBSERVATORY" required="no" allow_multiple="ues"/>
            <child_element name="MEASURMENT_TYPE" required="no" allow_multiple="ues"/>
            <child_element name="PROCESSING_LEVEL" required="no" allow_multiple="yes"/>
            <child_element name="ACCESS_RIGHTS" required="no" allow_multiple="no"/>
            <child_element name="AVAILABILITY_STATUS" required="no" allow_multiple="no"/>
            <child_element name="FORMAT" required="no" allow_multiple="ues"/>
            KchildLelement name="RESOLUTION" required="no" allow_multiple="no"/>
            <child_element name="CADENCE" required="no" allow_multiple="no"/>
            <child_element name="TIME_SPAN" required="no" allow_multiple="no"/>
            <child_element name="DATA_CURRENCY" required="no" allow_multiple="no"/>
            <child_element name="MEASUREMENT_DURATION" required="no" allow_multiple="no"/>
            <child_element name="CAVEATS" required="no" allow_multiple="no"/>
        <p
    </element>
    Kelement name="DATA_CURRENCY" display="Data currency" description="The expected time lag between d
        <content>
            <string maxlen="500"/>
        </content>
        Kchildren/>
    Kelement name="PRODUCT_NAME" display="Product name" description="A short, unique description of a
        (content)
            <string maxlen="100"/>
        <p
        Kchildren/>
    </element>
```

```
K?xml version="1.0"?>
<!DOCTYPE product SYSTEM "product.dtd">
Koroduct>
    <elm name = "PRODUCT">
        <elm name = "HEADER">
             <elm name = "PRODUCT_NAME">
                 <string value = "OMNI"/>
             </elm>
             <elm name = "PRODUCT_DESCRIPTION">
                 <string value = "Hourly near-Earth solar wind magnetic field, plasma and energetic par</p>
             <elm name = "CONTACT_INFORMATION">
                 <string value = "Natalia Papitashvili, GSFC/NSSDC, Natasha@mail630.gsfc.nasa.gov"/>
             <elm name = "INSTRUMENT_ABBREVIATION">
                 <string value = "SWE"/>
             </elm>
             <elm name = "INSTRUMENT_ABBREVIATION">
                 <string value = "SWEPAM"/>
             </elm>
             <elm name = "INSTRUMENT_ABBREVIATION">
                 <string value = "MFI"/>
             </elm>
             <elm name = "INSTRUMENT_ABBREVIATION">
                 <string value = "MAG"/>
             </elm>
             <elm name = "ACCESS_URL">
                 Kurl value = "http://nssdc.gsfc.nasa.gov/omniweb" description="Yet another test"/>
             </elm>
             <elm name = "REPOSITORY">
                 <id value = "NSSDC"/>
             </elm>
             <elm name = "PRODUCT_TYPE">
                 <id value = "DATA"/>
             </elm>
             <elm name = "OBSERVATORY_REGION">
                 \langle \text{did value} = \text{"L1"}/\rangle
             </elm>
             <elm name = "OBSERVATORY">
                 Kid value = "ACE"/>
             </elm>
             <elm name = "OBSERVATORY">
```

```
<elm name = "TIME_SERIES">
    <elm name = "PHYSICAL_QUANTITY">
        <id value = "MAG_FLD"/>
    </elm>
    <elm name = "QUALIFIER">
        <id value = "COMPONENT"/>
    </elm>
    <elm name = "QUALIFIER">
        </elm>
    <elm name = "COORDINATE_SYSTEM">
        <id value = "GSE"/>
    </elm>
    <elm name = "UNIT">
        Kunit value = "NT"/>
    </elm>
    <elm name = "TIME_SERIES_DESCRIPTION">
        <string value = "GSE (and GSM) X component of hour-averaged magnetic field"/>
    </elm>
    <elm name = "ENTITY">
        Kid value = "FIELD"/>
    </elm>
    <elm name = "RESOLUTION">
        Knumber_real value = "3600."/>
    </elm>
</elm>
<elm name = "TIME_SERIES">
    <elm name = "PHYSICAL_QUANTITY">
        <id value = "MAG_FLD"/>
    </elm>
    <elm name = "QUALIFIER">
        <id value = "COMPONENT"/>
    </elm>
    <elm name = "OUALIFIER">
        <id value = "Y"/>
    </elm>
    <elm name = "COORDINATE_SYSTEM">
```

Future Directions

- Add more accessors for "ordered" ftp sites.
- Add more accessors for VSO and other products when the APIs are available.
- Continue to add products.
- Develop metadata management software.
- Provide an API for access from applications.
- Produce a companion higher-order query service based on event lists and modest resolution data sets held and manipulated in RAM.